Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition
نویسندگان
چکیده
BACKGROUND Forest litter decomposition is a major component of the global carbon (C) budget, and is greatly affected by the atmospheric nitrogen (N) deposition observed globally. However, the effects of N addition on forest litter decomposition, in ecosystems receiving increasingly higher levels of ambient N deposition, are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We conducted a two-year field experiment in five forests along the western edge of the Sichuan Basin in China, where atmospheric N deposition was up to 82-114 kg N ha(-1) in the study sites. Four levels of N treatments were applied: (1) control (no N added), (2) low-N (50 kg N ha(-1) year(-1)), (3) medium-N (150 kg N ha(-1) year(-1)), and (4) high-N (300 kg N ha(-1) year(-1)), N additions ranging from 40% to 370% of ambient N deposition. The decomposition processes of ten types of forest litters were then studied. Nitrogen additions significantly decreased the decomposition rates of six types of forest litters. N additions decreased forest litter decomposition, and the mass of residual litter was closely correlated to residual lignin during the decomposition process over the study period. The inhibitory effect of N addition on litter decomposition can be primarily explained by the inhibition of lignin decomposition by exogenous inorganic N. The overall decomposition rate of ten investigated substrates exhibited a significant negative linear relationship with initial tissue C/N and lignin/N, and significant positive relationships with initial tissue K and N concentrations; these relationships exhibited linear and logarithmic curves, respectively. CONCLUSIONS/SIGNIFICANCE This study suggests that the expected progressive increases in N deposition may have a potential important impact on forest litter decomposition in the study area in the presence of high levels of ambient N deposition.
منابع مشابه
Soil Biochemical Responses to Nitrogen Addition in a Bamboo Forest
Many vital ecosystem processes take place in the soils and are greatly affected by the increasing active nitrogen (N) deposition observed globally. Nitrogen deposition generally affects ecosystem processes through the changes in soil biochemical properties such as soil nutrient availability, microbial properties and enzyme activities. In order to evaluate the soil biochemical responses to eleva...
متن کاملEffects of Experimental Nitrogen and Phosphorus Addition on Litter Decomposition in an Old-Growth Tropical Forest
The responses of litter decomposition to nitrogen (N) and phosphorus (P) additions were examined in an old-growth tropical forest in southern China to test the following hypotheses: (1) N addition would decrease litter decomposition; (2) P addition would increase litter decomposition, and (3) P addition would mitigate the inhibitive effect of N addition. Two kinds of leaf litter, Schima superba...
متن کاملExogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition.
It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and (15)N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the cou...
متن کاملEffects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus tabulaeformis Forests
The litter decomposition process is closely correlated with nutrient cycling and the maintenance of soil fertility in the forest ecosystem. In particular, the intense environmental concern about atmospheric nitrogen (N) deposition requires a better understanding of its influence on the litter decomposition process. This study examines the responses of single-species litter and litter mixture de...
متن کاملSimulated Atmospheric N Deposition Alters Fungal Community Composition and Suppresses Ligninolytic Gene Expression in a Northern Hardwood Forest
High levels of atmospheric nitrogen (N) deposition may result in greater terrestrial carbon (C) storage. In a northern hardwood ecosystem, exposure to over a decade of simulated N deposition increased C storage in soil by slowing litter decay rates, rather than increasing detrital inputs. To understand the mechanisms underlying this response, we focused on the saprotrophic fungal community resi...
متن کامل